

An example on profitability

A small workpiece made from G-A1, complete with two M3-threads, should cost \in 9,60 As every month you have to deliver 10.000 pieces. At "only" 0,5 % of missproduction, caused by one of various possibilities, the result is tap breakage and scrap

Lets work this out

50 pieces each	€	9,60	€	480,00
50 taps each	€	22,00	€	1.100,00
50 cases of machine tool preparations at 6 min. = 5 h/	€	25,00	€	125,00
Financial loss monthly			€	1.705,00

And everybody knows, that this example is rather optimistic. Reality looks worse!

We do have the solution!

Automatic thread tapping machines microtap II-G5 (M1 - M5/V2A/Inox) Purchasing cost: €7.900,- incl. quick change chucks with five collet holders (M1 - M6)

Pay back within 4,6 month

Cost savings within one year

12 months € 1.705,00 € 20.460,00

Savings	Purchase	Profit 1. year
€20.460,00	€ 7.900,00	€ 12560,00

Interested?

Please ask for an offer and further details.

Case history for thread tapping

How cost-effective is your tapping process?

The following three examples provide some illuminating figures arising from a comparison of the costs of conventional tapping operations with the costs of tapping on a machine with torque monitoring and accurate thread depth control. All three examples show that the capital cost of a modern machine can be recovered within a few months. When used for several years, the use of this modern machine results in substantial savings

Large and medium production series

A cost example of the conventional production process

The target cost for a small aluminium casting part is $\leq 20,00$. Production is to run at the rate of 10.000 parts per month. Among other features, the part has a blind hole to be tapped M4

	Material cost €	Labour cost €	Machining cost €	Tool cost €
Raw material	2,00			
Finishing		1,00	1,00	
Mill, drill, chamfer, deburr		7,00	7,00	
Tapping		0,04*	0,04	0,006**
Cleaning		0,50		
Quality control, packing and despatch		0,50		

(*) = placing part in fixture manually, 5 second cycle \rightarrow 720 parts/hour at \in 30,00 /hour labour cost (complete)

 $(^{**}) = \in 30,00$ per high-grade thread tapping tool, tool life 5.000 parts under optimum conditions

Profitability-Examples.doc 2 microtap GmbH / Rotwandweg 4 82024 Taufkirchen / Muenchen - Germany Tel +49-89-6128051 / Fax +49-89-6127488 info@microtap.de www.microtap.de/ April 11

Assumption

Of 10.000 parts per month only 0,5% will have a guide hold	le too she	ort,
too small or at an angle \rightarrow tool breakage!		
The scrap rate will therefor be 50 parts per month.		
Evaluation of production loss per month?		
50 parts at €18,46 each	€	923,00
50 broken taps at € 30,00 each	€	1.500,00
50 set-up sessions at 6 min each = 5 hours at € 50,00/h		
tool setter's time	€	250,00
Loss total	€	2.673,00

Problem solution

Thread tapping machine microtap II-G5

Capital cost \in 7.900,00 incl. quick tool change system / with 5 inserts (M1 - M6) Which effect does this capital investment have?

Threads are tapped under the following conditions

- technical evolution \rightarrow increasing know how

Amortisation of capital investment within 3 months

Cost savings over one year Capital cost		-	prevention
€7.900,00	12 x	€	2.673,00
		€	32.076,00
Profit in one year = (Production loss prevention minus capital cost)		€	24.176,00

Small production series

A cost example of the conventional production process

After all machining, a comparatively large part made of V2A-steel, Titanium or Inconell has a value of \in 100,00. The last operation is the tapping of 10 metric M2 threads (blind holes). Because of the toughness and hardness of the material, on average 5 % of the taps break during tapping. The required production is 200 parts per month. The daily production rate is 10 parts. The number of holes tapped per month of 20 working days is therefore 200 x 10 = 2000

Assumption:

10 parts/day	=	200 parts/month	=	2000 tapping operations/month
TO parts/day	_	200 parts/month	_	

At 5 % tap fractures when tapping M2 in high-tensile materials, 100 tapping operations result in 5 seized or broken taps per day. Because of the high value of the part, broken taps are removed, the parts are eroded

Evaluation of loss per month?

Loss total	€	8.500,00
tool setter's time	€	500,00
100 set-up times at 6 min. = 10 h at € 50,00		
100 erosion operation at € 50,00 each	€	5.000,00
100 broken taps at €30,00 each	€	3.000,00

Problem solution

Thread tapping machine **microtap II-G5** Capital cost € 7.900,00 incl. quick tool change system / with 5 inserts (M1 - M6)

 \rightarrow

Which effect does this capital investment have?

Threads are tapped under the following conditions

torque is monitored

tool breakage is eliminated

- the spindle is counterbalanced \rightarrow
- optimum tool life is attained depth is measured to \pm 50 μ m
- quality is controlled \rightarrow
- technical evolution \rightarrow

 \rightarrow optimum quality

Amortisation of capital investment within 0,9 months

Cost saving over one year			
Capital costs	Product	ion loss j	prevention
€7.900,00	12 x	€	8.500,00
	=	€	102.000,00
Profit in one year	=	€	94.100,00
(Production loss prevention minus capital investment)			

Advantages and cost savings via automatic quality control during the tapping process

A part is to be tapped with M6 in blind holes (2x)

Material:	9sMn28 (mild steel)
Hole depth:	2xD = 12 mm
Value per part:	€40,00
Tool:	high grade tapping tool à €60,00
Parts/month:	1000 parts = 2000 threads
Quality requirements:	Depth must be accurate to +/- 0,1 mm by gauge. Red part
	of gauge must screw into tapped hole by no go gauge
	(more than "0" / Zero degrees angle)
Manager and a fille a families	Management of the term in a set to set the set is a set on Decord

Measurement of the torque Mz required for tapping, as a function of the diameter Dv of the guide hole, gave the following results

Dv (mm) 4,9 5,0 5,1 5.2	Mz 280 Ncm 200 Ncm 170 Ncm 140 Ncm	Gauging result ok not ok not ok not ok not ok	Remark red side screws in ½ turn red side screws in 2 turns
5,2	140 NCM	not ok	red side screws in 2 turns

Quality control is normally carried out by sampling finished parts by means of a thread depth gauge. The pitch of an M6 thread is 1 mm per turn. As the desired thread depth is 12 mm, the black side of the gauge must be screwed in 12 mm. Dimensional accuracy is normally checked by the customer via sectioning of samples of received parts. As a result, whole batches are frequently rejected

To what can the financial loss per month amount to?

Quality control during a production series (every 10th part per 100 is checked)	9 minutes per 100 90 minutes per mo	•	;
	1,5 hours =	€	75,00
customer`s rejects	1 batch per year		
\rightarrow complete batch 1000 parts	rechecking 1.000	oarts	
is returned \rightarrow recontrol, recovery of good parts	900 min.		
	15 h/year € 750,00		~~ ~~
	per month	€	62,50
Due to unrecognised tapping tool wear			
amounts the production loss 10 parts until the	per month	~	100.00
problem is recognised and the tool is	10 x € 40,00	€	400,00
exchanged			
10 replacement taps			
Of 100 parts, one is drilled either to small or at	of 100 parts		
an angle - the tapping tool breaks.	1 x set-up time - 6 minutes		
	1 x part – unusable	•	
	60 minutes =	€	50,00
	10 parts =		
10 tapping tools	€60,00 each=	€	600,00
Reject costs per month	=	€	1.587,50

Thread-Tapping -Technology

Profitability

Problem solution

Thread tapping machine megatap II - G8

Capital cost €11.600,00 incl. quick change system / 6 inserts M2 - M10

Features: Automatic quality control plus reduced tool wear

- By presetting torque Mz min = 180 Ncm and Mz max = 220 Ncm, the control unit automatically reports pilot hole diameter larger than 5,05 mm (the torque drops below 180 Ncm); or smaller than 4,95 mm, (the torque rises above preset maximum of 220 Ncm) the machine reverses in either case out of the pilot hole. Damage to the tapping tool is impossible. The automatic tapping machine megatap II-G8 monitors automatically the applied torque and the preset thread depth.
- Quality control is assured via the given tolerances, by cutting with a torque of between 180 and 220 Ncm and a monitored thread depth of 12mm +/- 50 $\mu m.$
- Inspection of finished parts = not required
- Scrap = not possible
- Tool breakage
 eliminated
- Technical evolution
 increasing know how

Amortisation of capital investment within 7,3 month!

Capital costs	Production loss prevention	
€11.600,00	€1.587,50	= 7,3 months

Cost savings over one year:

Capital costs		Savings per mo	nths	
€11.600,00	./.	€19.050,00	=	€7.450,00 profit 1 st year
			=	€19.050,00 profit 2 nd year

Thank You for your attention!